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Abstract. We study the drug licensing behavior (acquisition of rights for developing
drugs) of large pharmaceutical firms in the aftermath of large negative shocks to their
pipelines, phase 3 failures (P3Fs). We find that P3Fs lead to increased licensing within a
year of the event. This result is significant, because one year is a short window given the
usual timelines—licensing is a lengthy process that requires extensive planning and careful
execution. Supported by a series of additional results, we interpret this finding as a re-
flection of rushed firm behavior. Correspondingly, our main finding is that drugs licensed
in these circumstances (within a year of a P3F event) underperform in subsequent de-
velopment: they are significantly less likely to reach the market compared with others
licensed in normal conditions. Further analysis suggests that this underperformance may
stem from the influence of rush on activities taking place in the “last mile” of the licensing
process and could hinge on the quality of the agreements that firms converge to during
contract negotiations.
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1. Introduction
OnDecember 2, 2006, the pharmaceutical giant Pfizer
announced “surprising and disappointing” news to
its investors (Pfizer Inc. 2006). In its Phase 3 clini-
cal trial, the cardiovascular-targeted experimen-
tal cholesterylester transfer protein (CETP) inhibitor
Torcetrapib had produced a disproportionate amount
of deaths. The trial was stopped, and the drug’s de-
velopment was discontinued immediately. The next
trading day, Pfizer’s stock price dropped by 11%.
Responding to stakeholder pressure, the company’s
Chief Executive Officer vowed to “bring increased
focus and emphasis to its business development and
licensing efforts in order to identify new products and
technologies thatwill supplement its pipeline” (Pfizer
Inc. 2006). Fivemonths later,managementmade good
on this promise by licensing the experimental anti-
coagulant Apaxiban (Pfizer Inc. 2007).

Taken at face value, this timeline is surprising.Drug
licensing (the acquisition of development and com-
mercialization rights for experimental drugs) is a
highly involved and lengthy process that requires
extensive planning and careful execution. Even after
candidates are identified, extensive negotiations and
due diligence take place, each of which could take the
better part of a year. Did Pfizer relax its selection,
planning, or execution standards to get this deal over

the line quickly?Did the licensing ofApaxiban adhere
strictly to Pfizer’s strategic goals, or was it primarily
shaped as a reaction to Torcetrapib’s failure?
We engage with these questions through a sys-

tematic analysis of licensing and product develop-
ment performance in large pharmaceutical firms. Our
primary motivation is to illustrate the significance of
a type of firm behavior that we think may be both
common and consequential. This behavior is encap-
sulated by the layperson’s notion of rushing—the
proclivity to respond to pressure through immediate,
extemporaneous action. The arena of drug licensing is
unique in the sense that it allows us to measure both
the incidence and consequences of rushed behavior
in a context where stakes are large. Phase 3 failures
(P3Fs) are large negative shocks that reportedly in-
troduce a significant amount of stakeholder pressure
on management. In turn, licensing deals are large
transactions which, as noted, require a high level of
premeditation. More importantly, the potential con-
sequences of rush can be assessed through a rather
incontrovertible performance measure: rates of post-
licensing development success. Consistent with the
presence of rush, we find that firms like Pfizer do tend
to increase their licensing activity shortly after a P3F
event. Correspondingly, our main result is that, com-
pared with drugs licensed in normal conditions, those
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licensed in these circumstances are significantly more
likely to have their development subsequently terminated.

Our empirical strategy takes advantage of the sub-
stantive quasi-experimental component governing the
incidence and timing of P3Fs. Models are estimated on
a comprehensive dataset tracking development and
licensing activities of 20 of the largest pharmaceutical
firms in the world over a 15-year period (2001–2015).
The licensing impact of P3Fs amounts to a 0.05 higher
licensing probability (23% lift) within one year of the
P3F event—a short window given usual licensing
timelines. Further analyses reveal a series of signs that
are consistent with rushed behavior. The first of these
is a focus on near-future action It is illustrated by the
finding that P3F-fueled licensing vanishes in slightly
longer windows (two and three years). The second
marker is lack of premeditation, and is suggested by
three complementary results. Specifically, we find
that the P3F-fueled licensing surge (i) does not seem
to be motivated by the pursuit of stock market gains,
(ii) does not seem to be grounded on pre-established
policies linking pipeline events to licensing activity,
and (iii) is concentrated in circumstances in which the
amount of stakeholder pressure triggered by a P3F
event is presumably larger. Based on these results, we
take pre-licensing P3Fs as a signal for a rushed li-
censing process and say that drugs licensed shortly
after such an event were licensed in a rush. Compared
with others licensed in normal conditions, these have
a 0.1 higher probability of termination in post-licensing
development (16% lift). These results withstand falsi-
fication and a number of robustness checks. Analyz-
ing the data through the lens of heterogeneous treat-
ment effects, we find that firms’ propensities to license
drugs in a rush and later terminate their develop-
ment may vary widely depending on their contexts
(andmay not always be significant). Importantly, this
analysis also suggests that those firms that are more
likely to engage in rushed licensing behavior are also
more likely to suffer the negative performance con-
sequences thereof.

We then turn our attention to mechanisms—what
explains the underperformance of drugs licensed in
a rush? Based on the characteristics of the licensing
process, we outline three sets of activities that could
be adversely impacted by rush: search, contracting,
and due diligence.We implement high-level tests that
directly address the former two channels and provide
suggestive evidence of the effects at play. If drugs
licensed in a rush were always identified through
“fresh” search processes (i.e., processes initiated fol-
lowing the triggeringP3F shock),wewould expect them
to exhibit a lower degree of firm/technology fit—rush
would limit firms’ ability to scout the “right” can-
didates. In our data, however, rushed licensing does
not imply poorer technological fit. We neither find

a rush-fueled difference in term of maturities (i.e.,
development stage at licensing). These results suggest
that rushed licensing does not rely on fresh search,
suggesting that drugs licensed in a rush likely corre-
spond to “recycled old leads.” Our suspicions for the
motives of underperformance are thus turned to the
possible acceleration of due diligence and/or con-
tracting. Rushed contracting wouldmanifest through
agreements that are overly incomplete in the sense
that they contain “lose ends,” which increase the
probability of interorganizational friction. Evidence
is consistent with this conjecture: drugs licensed in a
rush are twice as likely to be terminated in circum-
stances linked to an abnormal amount of such friction.
Thus, the underperformance result seems to be rooted
on activities taking place in the “last mile” of the li-
censing process and could hinge on the quality of the
agreements that firms converge on.
As a whole, this evidence is consistent with the

idea that licensing decisions of large pharmaceutical
firms can be influenced by rush at the expense of
nonnegligible development underperformance. This
general result aligns with the views of some indus-
try observers. For example, Mittra (2007) states that
“licensing-in products to fill a portfolio gap is a risky
strategy” (p. 294). Similarly, Sarnet and Lachman
(2005) write that “companies stating that they are
‘opportunistic’ regarding licensing activities find
themselves floundering with an inefficient and re-
source consuming process resulting in few successful
licensing candidates.” Licensed drugs now account for
half of revenues and a third of the launches of large
pharmaceutical firms (Goodman 2009, Kneller 2010).
Moreover, the industry’s historical struggles with
attrition have continued to intensify (Paul et al. 2010,
Pammolli et al. 2011)—according to the most opti-
mistic recent estimate, one in over seven therapies
tested in clinical trials reaches the market (Wong
et al. 2019). Although we cannot formally qualify
the (shareholder) optimality of rushed licensing be-
havior, these caveats suggest that fewpharmaceutical
executives would be indifferent to our findings. Our
mechanistic results suggest that firms may have it
in their control to soften the underperformance of
rushed licensing, for example, by strengthening con-
tracting protocols.
Our findings directly inform the new product de-

velopment (NPD) literature which, despite paying
significant attention to timing issues, has not yet
addressed the concept of rush. One closely related
framework showcases the tradeoff between devel-
opment speed and NPD success (Cohen et al. 1996,
Bayus 1997). Speed is conceptualized as a fully pre-
meditated decision that is controlled over long ho-
rizons (full development cycle).1 Although consistent
with this framework, the notion of rushed innovation
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that emerges from our analysis emphasizes distinc-
tively different mechanics: rushed decisions lack pre-
meditation and impact near-future actions. Moorman
and Miner (1998) develop another related framework
based on the notion of NPD improvisation. Defined as
the convergence of planning and execution, impro-
visation can arise as a response to turbulence, and
thus be potentially linked to positive outcomes through
creative (although premeditated) adaptation. The det-
rimental impacts of rush that we illustrate are most
relevant for contexts in which creative courses of action
offer little gain.

Our research also adds to a rich literature focus-
ing on pharmaceutical innovation, particularly to its
strands emphasizing productivity (e.g., Cockburn
and Henderson 2001), the role of alliances (e.g.,
Danzon et al. 2005), and the impact of product-related
shocks on subsequent innovation (e.g., Ball et al.
2018). The structure of our result is similar to that
of Guedj and Scharfstein (2004), who find that, com-
pared with managers of larger biopharmaceutical
startups, those of smaller, single-product ones make
riskier early-stage development decisions that backfire
later in the process. In addition, in a prominent study
of drug development timing, Dranove and Meltzer
(1994) find that clinically important drugs reach the
market sooner. This result is interpreted as a reflection
of firms’ premeditated and consistent efforts to ex-
pedite the development of potential blockbusters.

Lastly, our research contributes to the study of in-
novation outsourcing. Higgins and Rodriguez (2006)
find that pharmaceutical firms tend to engage in
Mergers and Acquisitions (M&As) when their pipe-
lines are “running dry.” Contrasting with the in-
tuition of our results on licensing, M&As seem to
generally resolve the problem of weak pipelines.
This substantial difference between the two sets
of results likely stems from the relative size of
transactions—M&As aremuch larger deals that require
widespread stakeholder support. The process of gath-
ering this support will likely weed out poor prospects
and force premeditation. Given their smaller size, li-
censing deals are likely to receive much less organi-
zational scrutiny, be more discretional, and thus
more vulnerable to rush. In addition, by its focus on
the demand side of the licensingmarket, our work also
contributes to the literature on markets for technol-
ogy (Arora et al. 2004), which has maintained a strong
“supply-side” focus (Arora and Gambardella 2010).

2. Institutional Background
2.1. The Drug Development Process and

Phase 3 Failures
2.1.1. The Process. This highly structured process
starts when amolecule’s formulation is identified and
then fine tuned in the laboratory. At this point, a set

of potential therapeutic applications (i.e., molecule/
targeted disease combinations, henceforth called
“therapies”) is identified. These early formulation
activities are followed by experiments on animal
subjects (“preclinical” trials) aimed at assessing their
potential. Our data source collapses these two sets of
activities into a single “discovery” stage. Therapies
with adequate-enough potential move on to clinical
trials on humans. If the development process carries
forward, each therapy requires a largely independent
set of trials. The clinical trial protocol is sequential and
composed of three phases of randomized experi-
ments: Phases 1 (safety), 2 (efficacy), and 3 (safety and
efficacy in larger populations and relative to alterna-
tives). Therapies that are successful at all of these stages
can be presented to the regulator in application for a
commercialization permit (“review” stage).

2.1.2. P3Fs. Because of significant attrition at earlier
stages, few therapies that enter the process reach
Phase 3 (P3).2 Therapies that succeed at P3move on to
the review stage, in which failure rates are the lowest.
However, P3 success is not ensured—about 40% of
therapies fail at this stage (Wong et al. 2019). Poor
experimental results (lack of efficacy and adverse
events) are by far the primary reason for failure
(Hwang et al. 2016). P3 is therefore perceived as
the last “big hurdle” to overcome to reach the market.
Because P3 trials aim at providing definitive proof

of safety and efficacy, they are the longest and largest
in the process. These factors build in significant
randomness in terms of the amount of time that it takes
for outcomes to be observed. Some of this randomness
is introduced throughpatient enrollment—the “arrival”
of patients is not fully controlled by the firm. This is
an aspect that challenges sponsors given that patients
need to meet several eligibility criteria in addition to
being sick (i.e., actively suffering the targeted con-
dition).3 Another source of randomness comes from
the nature of collected data. If these data provide strong-
enough evidence against or in favor of the tested ther-
apy, ethical imperatives require that the trial is stopped
before its planned completion time. This was the case,
for example, for the P3 trial of Torcetrapib that we cited
in Section 1 (terminated early because of an abnor-
mally large number of treatment-arm deaths).
Sponsors in general have little scope to engage in

strategic information release in the wake of a P3F
event. By the time that a therapy reaches P3 it has
usually captured the attention (and hopes) of the
firm’s stockholders, patient organizations, analysts,
and investors—“when Phase 3 clinical trial failures
happen it is a painful blow—to the drug manufac-
turer, to investors and to patients” (Merrill 2016).
Thus, the trial’s evolution is tracked closely by sev-
eral interest groups. More importantly, clinical trials
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are conducted under tight regulations aimed at en-
suring the scientific integrity of results and the ethical
treatment of patients. The degree of oversight is ac-
centuated for P3 trials, for example, as reflected by the
widespread use of independent “data monitoring
committees.”These committees review incoming trial
data on a regular basis and provide recommendations
on whether/how to continue (Freidlin et al. 1999). At
any time, these entities may recommend that the trial
be stopped. Pfizer’s announcement of Torcetrapib’s
discontinuation was made the same day (a Saturday)
that the respective monitoring committee recom-
mended the trial’s termination (Pfizer Inc. 2006).

2.2. Drug Candidate Licensing
2.2.1. The Licensing Market. Until about 35 years ago,
drug discovery was vertically integrated into large
pharmaceutical firms along with development and
commercializationactivities. This configuration changed
following a series of scientific breakthroughs begin-
ning in the mid-1970s, which largely eliminated barriers
of entry into drug discovery (Pisano 2006). A fringe of
biotechnology startups focusing on early-stage in-
novation activities was established in the decades that
followed. Backed by venture capital, these startups
are typically led by academic scientists with the goal
of “translating” their research findings into thera-
peutic technologies. Their innovations are monetized
in three primary ways: (i) licensing, (ii) “trade sales”
(firm is acquired by a larger company), and (iii) self-
commercialization. The supply side of the licensing
market is primarily populated by biotechnologyfirms
choosing the first route.

Licensing means that the “inventing” firm sells
the commercialization rights of a set of developing
therapies to another firm. Selling firms are called
“out-licensors” and buying firms “in-licensors.” Be-
cause our focus here is on large pharmaceutical
“buyers,” we will simplify by just using “licensing”
instead of “in-licensing” (unless differentiation is
useful). These transactions are based on negotiated
contracts, which typically deliver most of the po-
tential compensation on a contingent basis (milestone
payments and royalties on market revenues). The
purposes of this contingent component are to spread
risk, mitigate informational problems, and ensure the
biotechnology firm’s continued involvement in de-
velopment activities (Mason et al. 2008). As reflected
by the volume of U.S.- and European-based licensing
deals—$40, $43, and $57 billion in 2007, 2010, and
2016, respectively (Giovannetti and Spence 2017)—
this is a large and growing market.4

2.2.2. Incentives to License. From the point of view of
in-licensing pharmaceutical firms, licensing constitutes
the most lean and expedited route to integrate cutting

edge advances into their pipelines (Cockburn 2004). For
biotechnology firms, a primary incentive to choosing
licensing over self-commercialization is to benefit from
the (in-licensing) partner’s “complementary assets”
(Teece 1986, Gans et al. 2002). Other than funding,
these capabilities may include “know-how” (e.g.,
regulatory affairs and implementation of clinical trials)
(Powell 1996) as well as assets that are important for
massive commercialization (e.g., branded reputation
and established sales forces). Thus, relative to self-
commercialization, licensing is better suited for the
development of therapies that target large markets or
those that require complex or costly clinical trials. In
addition, from the point of view of the biotechnology
firm’s financial backers, licensing has the benefit of
outlining a safer profile of returns (some compensa-
tion is received even if therapies do not reach the
market). Relative to trade sales, licensing allows
founding scientists and investors to retain control of
the firm while participating in the financial upside of
potential blockbuster therapies.5

2.2.3. Contracting Frictions and the Liabilities of
Rush. Important contracting frictions are primarily
rooted in the rapidly evolving and deepening scientific
basis from which biotechnology innovation draws
(Powell 1996, Pisano 2006). In this environment, the
licensing supply is continuously infused with ther-
apies that rely on novel, diverse, and rapidly evolving
technological approaches. This dynamism makes it
difficult for potential in-licensors to identify the “right”
candidates. It also increases the need for thorough due
diligence—scientific novelty and complexity create a
fertile ground for informational asymmetries. Most
large pharmaceutical firms have dedicated business
development and licensing offices tasked with con-
stantly scouting the market for licensing opportuni-
ties (Davies 2013).
Drawing on interview evidence, Alcacer et al. (2009)

illustrate some of the orchestrated search activities
performed by pharmaceutical in-licensors. Major
stages of the process include a worldwide search and
screening for licensing opportunities followed by an
in-depth analysis of each identified candidate, and a
final screening. For one of the (anonymous) inter-
viewed firms, an initial screening of candidates from
80–100 firms typically delivered one or two licensing
opportunities. The statistics of Davies (2013) suggest
that these figures may pale in comparison with those
of the very largest pharmaceutical firms (such as the
ones in our sample). For example, Merck & Co.
reviewed over 8,000 opportunities in 2011, of which
less than 1% produced a licensing deal. Around the
same time, Roche acted on less than 2% of reviewed
opportunities. These low conversion rates suggest
that good opportunities are not easy to find.
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After licensing candidates have been selected, deep
due diligence and valuation activities begin. These
may take the better part of a calendar year, or longer
(Truex 2018). The importance of due diligence arises
in part from biotechnology firms’ large informa-
tional advantages (Pisano 1997, Hermosilla 2016). In-
licensors need to verify the integrity of the underlying
science and intellectual property (breadth and vulner-
abilities). Accordingly, pharmaceutical in-licensors de-
ploy multifunctional teams (including lawyers, exec-
utives, and field expert scientists) at every stage of the
process (Alcacer et al. 2009).

Lastly, it is important to note that much of the
scientific knowledge embedded in licensed therapies
is tacit at the time that agreements take place (Pisano
2006). For this reason, postlicensing development
requires the continued involvement of the out-
licensing firm’s scientists. Accordingly, the negotia-
tion and design of contracts are of particular im-
portance, and as such, require a particularly high
degree of involvement from the in-licensing firm. If
parties fail to adequately specify boundaries, expec-
tations, or contingent decision rules, development
outcomes may be jeopardized. These contracting
aspects will be revisited in Section 6, where we in-
vestigate themechanisms underlying ourmain result.

3. Data
3.1. Source and Structure
Our main data source is Clarivate Analytics’ Cortellis
Competitive Intelligence. Cortellis is heralded as the
most comprehensive and up-to-date repository of
pharmaceutical innovation data.6 From this source,
we assembled a dataset focusing on the licensing and
development activities of 20 of the largest pharma-
ceutical firms globally for the 15-year period of
2001–2015.7 During this period, selected firms had
the highest licensing frequency within the full data
(according to the parameters described below).

Firms in the sample actively developed therapies
spanning 20 therapeutic areas. We retained data from
the 17 areas in which key variables have enough
variation. Because the economics and science of drug
development have large area-specific components,
we assume that licensing and termination decisions
are made at the firm/therapeutic area-level. We thus
call each firm/area pair a decision-making “unit.” A
unit enters the sample in the first quarter that it ac-
tively develops a therapy. The sample has a total of
230 units.

Variable construction and data processing are easier
to follow if we consider two datasets. The first includes
licensing and development histories of all therapies
licensed by units in the sample over the covered pe-
riod. We call this the “analysis sample.” The second
dataset includes the universe of all records available

from Cortellis. These will be used to construct con-
trols and secondary outcomes.We call this the “broad
Cortellis sample.”

3.2. Licensing
Here, we cover the main characteristics of the set of
licensed therapies included in the analysis sample.8

Licensing agreements vary in the geographical scope
of traded rights—we focus on worldwide deals. Li-
censing deals may also bundle rights for more than
1 therapy (sample average of about 2.5 therapies),
and bundled therapies may span across areas. We
treat each licensed therapy as an individual licens-
ing event.9 Lastly, because financial compensation
terms are rarely available from the data, they play
no part in our analysis. The sample that results
after imposing these filters includes 3,495 licensed
therapies. About 48% of these are in the cancer
area. Endocrinological and metabolic therapies and
autoimmune/inflammatory therapies follow distantly
(9% and 8%, respectively). Most licensed therapies are
early stage: 25% are licensed before clinical trials, and
62% are licensed before phase 3. The average unit
licenses an average of about two therapies each year,
although the distribution is quite skewed.
Figure 1 presents some aggregate trends that help

place this licensing activity into context. The dashed
line of Figure 1 shows the number of actively de-
veloping therapies maintained by units in the anal-
ysis sample (“pipeline size” on the left axis). This
trend suggests that pipelines experienced significant
growth over the covered period.10 The solid line plots
the share of all therapies added to these pipelines

Figure 1. Main Innovation and Licensing Trends in the
Analysis Sample

Notes. The analysis sample includes 20 large pharmaceutical firms.
The dashed line corresponds to aggregate pipeline size, measured as
the number of experimental therapies on active development. The
solid line indicates the share of pipeline additions that are obtained
via licensing.
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through licensing. This trend suggests that licens-
ing was an important and relatively stable source
of all pipeline additions during the sample pe-
riod (20%–30%).

3.3. Post-licensing Performance
Post-licensing development performance is tracked at
the therapy/stage level based on reported outcomes.
The compiled sample includes 1,783 such outcomes,
drawn from 1,375 therapies (from a total of 3,495 li-
censed in the sample). The primary reason formissing
outcomes is the inability to link the identity of li-
censed therapies to their postlicensing development
outcomes.11 In addition, among therapies for which
this link is available, data are missing if stage de-
velopment was still ongoing at the time of data
download.

We define the variable ADVANCE to measure per-
formance. Following standard practice in the litera-
ture (e.g., Wong et al. 2019), ADVANCE is set to one if
a therapy is observed advancing past a given stage
(i.e., next-stage development is observed). If devel-
opment is terminated at that stage,ADVANCE equals
zero. Although themajority of terminations in the data
are because of discontinued or indefinitely halted
development (86%), others come from the dissolution
of the underlying licensing agreement (9%).12 The bars
of Figure 2 describe averages of ADVANCE at dif-
ferent stages. P2 exhibits the lowest success rate
(about 20%), and the review stage exhibits the highest
(about 85%). For P3, the success rate is close to 50%.
These success rates are all within range of previ-
ously reported figures, although generally closer to
the lower bounds.13 Also note that the sample has
good coverage across stages and that the majority of
observations is from stages prior to P3.14 Thus, our
analysis of post-licensing performance will primarily
focus on cases where economic/strategic consider-
ations may play a meaningful role.

3.4. P3F Shocks
Given the units and period covered by the analysis
sample, the P3 failures of 498 therapies are relevant
for our analysis. Themajority of these therapies (about
80%) is not part of the analysis sample. That is, most
failed therapies were incorporated into pipelines
through in-house discovery, M&As, or pre-sample
licensing. About 24% of units experience one of these
failures, 12% experience two, and 27% experience
three or more. The remainder (37%) experience none
(these will be useful as part of control groups). Con-
sistent with the sustained growth of pipelines over the
covered period, the frequency of these failures is in-
creasing over time—about 70% of them occur in the
second half of the sample. Even though the cancer
area is a distant first in terms of frequency (31%;
followed by cardiovascular and endocrinological/
metabolic with about 11% each), the distribution is
quite spread out across areas.15

To implement our research design, we consider
“aggregate” P3F shocks. In practice, these shocks are
defined by the following condition: did the unit in
question experience the P3 failure of at least one of its
therapies over a given time window? Aggregation
windows vary for our two main analyses and conse-
quently, also for the resulting number of aggregate P3F
shocks that we can exploit in each case. (The resulting
number is in the hundreds in both cases. Aggregation
details and descriptives are provided in Section 4.4.) It
is also worth noticing that, as a result of aggregation,
some shocks are composed of the failure of more than
one therapy. We characterize the frequency of these
“non-standard” shocks and probe their influence on
our results in a robustness analysis.
Another aspect of these aggregate P3F shocks is

that they are not all fully independent events. This is
rooted in a pervasive feature of drug development
that we noted in Section 2.1: namely, the fact that
molecules can be developed to treat more than one
condition (i.e., a single molecular entity can be as-
sociated with more than one therapy). Specifically, in
our case, the 498 therapies that failed in P3 come from
337 different molecules. About half of these therapies
are “independent failures,” in the sense that they
represent a molecule’s unique P3 failure in our data.
The other half of failures are connected to another in
the data through a common molecule. It is important
to note that this last case does not always create in-
terdependencies among aggregate P3F shocks. An
interdependency is created only if a molecule’s failed
therapies span more than one therapeutic area (more
than one unit is affected) or if the molecule’s thera-
pies fail over different aggregation windows.16 These
situations are, however, relatively infrequent (less
than 16% of shocks are affected). In our analysis of
non-standard shocks, we provide additional detail

Figure 2. Post-licensing Development Performance: Stage
Advancement (Success) Rates
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and robustness. Evidence overall suggests that these
issues do not drive our main conclusions.

4. Empirical Strategy
Our strategy exploits the incidence and timing of the
aggregate P3F shocks described above. For simplicity,
these are henceforth referred to simply as “shocks,”
“P3Fs,” or “P3F events.” Estimation methods are
selected with the aim of holding constant the degree
of “surprise” associated with each shock.

4.1. Estimation Methods
We first consider propensity scorematching (Rosenbaum
and Rubin 1983). Here, P3F incidence plays the
role of treatment. It is coded as W � 1 for observa-
tions exposed to a shock (treated) and W � 0 other-
wise (control). The propensity score corresponds to
an estimate πi=Pr(W � 1|Zi), which represents the
probability that an observation i receives the treat-
ment given a set of predictors Z. Thus, estimated π
values capture P3F surprise. Following standard
practice, we estimate this probability using a logit
model. Estimation holds P3F surprise constant
through the computation of counterfactual out-
comes. In particular, the counterfactual outcome
Ŷ(1−Wi)
i is computed as the average outcome within a

“neighborhood set” composed of observations with
opposite treatment assignment but similarly valued
propensity scores. The causal impact of P3F shocks is
summarized by the average treatment effect (ATE),
defined as τ � E[Ŷ(W�1)

i − Ŷ(W�0)
i ], with Ŷ(Wi)

i � Yi. In
our context, this ATE estimate is interpreted as the
expected (sample-level) impact of a P3F on the out-
come Y. For inference, we use the heteroskedasticity-
consistent standard errors of Abadie and Imbens
(2006). The set of predictors Z includes a broad set
of contextual factors identified from related literature
as well as a variable that proxies for a unit’s risk of
experiencing a P3F based on P3 microdynamics and
portfolio composition. All of these variables are de-
scribed below.

We also consider the causal forest estimator (Wager
and Athey 2018, Athey et al. 2019), which also ac-
counts for P3F surprise through a propensity score.
The main advantage of this approach is that it de-
livers heterogeneous “conditional average treatment
effect” (CATE) estimates, which are computed sep-
arately for each observation (along with standard er-
rors) without requiring distributional assumptions.
These heterogenous estimates will not only be useful
for additional characterization and structural insight,
but also to control for variation that cannot be ac-
commodated by propensity score matching.

We implement this estimator using the generalized
random forests framework of Athey et al. (2019).17

Propensity scores are computed as before except that

the flexible random forests technique (Breiman 2001)
is used instead of the logit. The more important dif-
ference between methods lies in the way that treat-
ment effects are computed. The CATE estimate for
observation i, τi, is obtained by fitting the following
weighted moment condition:

E Yi′ −mi′( ) − Wi′ − πi′( ) · τi[ ] � 0, (1)
where mi′ corresponds to a random forests prediction
of Yi. Thus, τi is estimated from the deviations of
outcomes and treatment assignments from their re-
spective predictions. (Computation details are pro-
vided in Online Appendix A.) This expression is also
helpful to illustrate one of the advantages over pro-
pensity score matching, namely, the ability to control
for variation that is relevant for outcomes but not for
propensity scores. In particular, propensity scores π
will be computed using variables measured prior to
licensing, whereas expected outcomes m will be
computed using variables measured during the pe-
riod that immediately precedes outcome completion.
This aspect is of particular relevance for the analysis
of post-licensing performance, because outcomes are
usually observed several years after the treatment
(i.e., pre-licensing P3F) is experienced.

4.2. P3F Risk Score
We introduce a “P3F risk score” to better distill the
exogenous component of P3Fs. We first observe that
the likelihood of experiencing a P3F should increase
with the number of therapies that a unit has on active
P3 development (“P3D”). This number varies across
units and time. Even if this number is held constant,
P3Fsmay bemore or less likely to occur depending on
how long therapies have been on active P3D. The risk
score thatwe introduce combines these two sources of
variation in a natural way.
The score is formally defined as the probability

that unit j experiences a P3F during the time interval
[t1, t2]. To formalize it, denote unit j’s active P3D
portfolio at time t1 as!j(t1). Also denote as rk(t1, t2) the
probability that a therapy k introduced to P3D at an
earlier time tk fails during [t1, t2]—the gradient im-
plied by rk stems directly from the microdynamics
of P3 trials. With these elements, the risk score is
specified as

Rj t1, t2( )

�
0 if !j t1( ) is empty

1 − ∏
k∈!j t1( )

1 − rk t1, t2( ) otherwise.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Thus, R reflects the probability complement for the
event in which none of the therapies in !j(t1) fails
during [t1, t2]. The key ingredient in this formula-
tion is rk. By its definition in the previous paragraph,
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rk corresponds to a duration or “hazard” quantity.
One difference with the standard hazard quantity of
Cox (1972) is that rk is not instantaneous. Rather, it
corresponds to the integral of an instantaneous hazard
quantity over [t1, t2]. Furthermore, rk is defined not

only by trial duration (i.e., the event “P3 trial ends”)
but also, by the reason behind the trial’s completion
(i.e., the more specific event “P3 trial ends due to
failure”). Thus, to compute rk, we require a cause-
specific hazard estimate that we can then integrate

Figure 3. Elements for the Construction for the P3F Risk Score

Notes. (a) Theoretical illustration. The function Fk(t) corresponds to the probability that a therapy k introduced to P3D at time tk fails at or before
time t. (b) Estimated cumulative P3 failure subhazards (empirical correlates of Fk(t)) estimated via competing risks (Fine and Gray 1999) on a
large sample of P3 development histories (all therapeutic areas in period 2001–2005). Variability shown by boxes comes from differences across
therapeutic areas.
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over [t1, t2]. The competing risks framework of Fine
and Gray (1999) provides us with “subhazard” esti-
mates that fit this description.

From competing risks estimates obtained fromdata
on P3 trial durations and outcomes, we assemble
functions Fk(t). These functions represent the proba-
bility that a therapy k that was introduced to P3 at
time tk fails at or before time t. Figure 3(a) illustrates
one such function. According to this curve, therapy k
has probability Fk(t1) of failing at or before time t1. Its
probability of failing any time after t1 is Fk(∞) − Fk(t1).
Because not all therapies fail, these probabilities do
not add up to one. Instead, they add up to the overall
probability of P3 failure, Fk(∞). The value rk is com-
puted as the fraction of all failure mass Fk(∞) that has
not been realized by t1 but is expected to be realized
within [t1, t2]. That is,

rk t1, t2( ) � Fk t2( ) − Fk t1( )
Fk ∞( ) − Fk t1( ) · Fk ∞( ).

We fit the competing risks model to over 9,000 P3 ob-
servations (duration and outcomes) available from the
broad Cortellis data, excluding therapies that appear in
the analysis sample. The model is specified to allow for
variability across areas (area-specific indicators) and
time periods (five year-period indicators). To illustrate
these results, Figure 3(b) presents F estimates for the
2006–2010 period (boxes capture variability across
areas). The R values entering estimations are de-
scribed below.

4.3. Contextual Factors
Licensing and advancement/termination outcomes
may be influenced by the context faced by firms. Here
we specify a set of variables that capture leading such
contextual factors. These are compiled from the in-
sights of related research and will play the role of
controls (or predictors, or covariates) in our analysis.

4.3.1. Recent Productivity. The evidence of Higgins
and Rodriguez (2006) suggests that declining pro-
ductivitymay prompt pharmaceutical firms to acquire
other firms as a means to “revitalize” their pipelines.
In the face of poor recent productivity, firms may also
revert to the licensing market. We thus introduce the
variable RTER OWN, which tracks the number of a
unit’s recent terminations (excluding P3Fs).

We face two hurdles to adequately specify this
variable. First, the importance of recent termina-
tions depends on the development stage at which
they unfold. For example, a therapy that is being
developed at P2 is more likely to reach the market
than one being developed at P1. We should thus
register a poorer recent productivity record when
the former is terminated. Accordingly, we require a

scheme to consistentlyweight terminations that occur
at different stages. Second, we also note that the rel-
ative importance of licensing is roughly stable de-
spite the sustained growth of pipelines during the
covered period (Figure 1). If RTER OWNwas defined
in absolute terms (e.g., count of terminations), its
influence on our estimates could primarily stem from
its temporal (industry-wide) variation. We combine
weighting and normalization steps to account for
these issues.
Theweighting step follows theapproaches ofHiggins

and Rodriguez (2006) and Girotra et al. (2007). We
begin by counting the number of terminations at each
stage s for each unit j over a measurement window
(window details provided below). We label each of
these counts Tjs and aggregate them using “reach-the-
market” probabilities {pas} as weights. These weights
represent the likelihood that an area a therapy at stage
s continues its development all of the way into the
market.18 (We are thus assuming that the importance
of a therapy’s termination is proportional to its sta-
tistical proximity to the market.) With these elements,
we compute unit j’s weighted number of termina-
tions as T̂j � ∑

s Tjs · pas. In the normalization step we
compute RTER OWN as 100 · (T̂j/Âj), where Âj rep-
resents the unit’s (importance-weighted) number of
actively developing therapies (computed in the same
fashion as T̂j). Therefore, RTER OWN represents the
importance of a unit’s recent terminations relative to
the strength of its pipeline during the measurement
window.

4.3.2. PipelineStrength andPrecompetitiveEnvironment.
Girotra et al. (2007) find that stronger pipelines soften
the negative impact of P3Fs on the sponsoring firm’s
stock market valuation and Chan et al. (2007) suggest
that termination and licensing decisions may jointly
depend on a sponsor’s pipeline strength.We therefore
introduce a pipeline strength variable PIPESTR. We
construct it based on the (importance-weighted)
number of actively developing therapies that we
introduced above, Â. For a unit j, PIPESTR is formally
defined as 100 · (Âj/(Âj + Â−j)), where Â−j is the sum-
mation of Âj′ values for all units j′ �� j in the area.19

Thus, PIPESTR measures the strength of j’s pipeline
relative to the area’s overall. Also note that PIPESTR
also reflects the intensity of premarket competition
(100 − PIPESTR).
We also create a variable tracking the importance of

recent licensing, RLIC OWN. This variable helps us
to account for a units’ baseline licensing propensi-
ties and potentially confounding “licensingwaves.”20

Using the weighting procedure, we compile the unit’s
recent licensing activity into the variable L̂j (aggre-
gates over therapies licensed at different stages),
and then set RLIC OWNj � 100 · (L̂j/Âj). The potential
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influence of competitively motivated licensing effects
is captured by the analogous “rest-of-area” variable
RLIC RAj � 100 · (L̂−j/Â−j). Thus, both of these vari-
ables measure recent licensing activity relative to
contemporaneous pipeline strength. Because the pro-
ductivity of competitors may impact future market op-
portunities, we also track “rest-of-area” productivity
through RTER RAj � 100 · (T̂−j/Â−j).

4.3.3. Competitive Environment. Chan et al. (2007) also
stress that licensing and development decisions may
depend on a firm’s portfolio of marketed therapies.
Firms with broad and “young” portfolios may be
under less pressure to supplement their pipelines
(or relax advancement thresholds) than others with
weak or “old” portfolios.21We constructMKTSHARE
to control for this effect. The variable is defined as
the percentage of allmarketed therapies in j’s area that
has been brought to market by unit j.22

4.3.4. Experience. Previous research has highlighted
the role of sponsors’ development experience (“scale”)
and diversification thereof (“scope”) as determinants
of innovative productivity (Henderson andCockburn
1996, Cockburn and Henderson 2001), including in
the context of licensing (Danzon et al. 2005, Arora
et al. 2009). Following the approach of these papers,
we incorporate these constructs through the variables
SCALE (each unit’s historical number of therapies
introduced to development; logged) and SCOPE (each
unit’s Herfindahl–Hirschman concentration index of
therapieshistorically introduced todevelopment; across
targeted diseases). Larger values of SCALE point to
larger amounts of accumulated experience; larger
values of SCOPE, to less diversified experience.

4.3.5. Financials. Licensing and termination decisions
may depend on the sponsoring firm’s financial con-
ditions, for example, through liquidity effects. We
retrieved sales data fromCOMPUSTAT to account for
this type of effects. Values are logged and recorded by
LOGSALES. Possible technological leadership effects
are accounted for similarly, through LOGRD (R&D
expenditures). Both variables are at the quarter/
firm level.

4.3.6. Secular Variation. The literature studying drug de-
velopment performance unveils significant differences
in success rates across stages and areas (e.g.,Wong et al.
2019). Therapeutic area indicators will thus be in-
cluded in all of our analyses. The analysis of perfor-
mance will also include development stage indicators.
In addition, Hermosilla (2016) argues that the li-
censing market is afflicted by an adverse selection
problem that is less problematic at more advanced
stages. Hence, to analyze performance, we will also

use licensing -stage indicators. Lastly, an extensive
literature highlights the role of market size as a de-
terminant of pharmaceutical innovation (Acemoglu
and Linn 2004, Dranove et al. 2014, Dubois et al. 2015),
including the propensity to license (Hermosilla and
Wu 2018). To control for market size variability, area
indicators will be supplemented with year fixed effects.

4.4. Measurement Windows and
Descriptive Statistics

4.4.1. Licensing Analysis. Our goal in this first anal-
ysis will be to assess whether P3Fs increase licensing
activity in the near future. Figure 4(a) illustrates our
research design. Observations are defined at the unit/
quarter level. The incidence and risk of P3F shocks
are measured at each focal quarter q, yielding a total
of 418 P3F shocks. The outcome DLICENSE equals
one if the unit in question licenses at least one ther-
apy in {q + 1, .., q + 4} and zero otherwise. Recent ter-
minations and licensing are measured over {q − 3, .., q}.
This last window is also used to measure PIPESTR
and MKTSHARE. Experience variables are mea-
sured from the broad sample based on the unit’s
entire development history up to (and including)
quarter q − 1.
The resulting data set contains 6,479 observations,

6.5% of which are exposed to P3F shocks (treated).23

Columns (1) and (2) of Table 1 present means and
interquartile ranges (IQRs) for each variable. Most
variables exhibit a right-skewed distribution. Given
that licensing events are relatively infrequent, this
skewness is particularly pronounced for a unit’s re-
cent licensing (RLIC OWN). The solid and dashed
lines of Figure 5 show the cumulative distributions of
P3F risk scores entering this analysis. These range
between 0 and 0.6. The dashed distribution (treated
observations) first-order stochastically dominates the
solid one (control observations). That is, treated ob-
servations tend to have higher risk scores than control
ones. This feature is reassuring because it suggests
that our formulation is effectively capturing P3F risk.
(Recall that hazard estimates used to construct risk
scores did not utilize analysis sample data.) Lastly,
theminimum risk score among treated observations is
approximately 0.01. About 5% of observations are
below this threshold. For these, P3F shocks are ar-
guably too unlikely. They are therefore dropped for
matching and causal forest estimations.

4.4.2. Performance Analysis. The question here is
whether pre-licensing P3Fs impact post-licensing
development performance. Figure 4(b) describes the
approach used to construct variables. P3F shocks,
their risk, and contextual factors are measured within
the year (365 days) that ends the day prior to each
therapy’s licensing. These variables will be used to
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estimate propensity scores.24 The outcome variable
ADVANCE is measured at all completed milestones.
Because these outcomes may depend on the recent
contexts faced by each unit, contextual factors are
measured again within the year prior to milestones’
completion. There is a total of 1,783 observations (287
treated), each of which corresponds to a licensed
therapy/completed milestone pair.

Columns (3) and (4) of Table 1 show descriptive
statistics for variables measured prior to licensing.

Because the sample focuses exclusively on contexts
leading up to licensing, some of the differences with
respect to statistics of columns (1) and (2) are due to
selection. Descriptives for factors measured prior to
the completion of each milestone are presented in
columns (5) and (6). The average time between li-
censing and the completion of the first milestone is
about 3.5 years, and about 2.5 between the second
and third (when available). The relatively minor
differences between columns (3) and (5) are explained
by the changes in the contexts faced by units over
these periods. The dotted lines of Figure 5 present the
distributions of risk scores measured over the same
window. Because of the wider measurement win-
dows, risk scores are generally larger than in the li-
censing analysis. The minimum score at which a P3F
is observed is about 0.1.

4.5. How Random Are P3F Shocks?
Recall that our inference relies on variability coming
from the incidence and timing of P3Fs, and that our
methods use propensity scores to isolate the random
component in it. Here, we characterize this random
component by asking whether contextual factors
predict P3F incidence. We use the dataset constructed
for the licensing analysis, in which observations
are specified at the unit/quarter level.25 Results are
composed of two sets of logit estimates, which are
presented in Table 2. In addition to all shown con-
textual factors, both specifications include year and
area fixed effects. The only difference between speci-
fications is the inclusion of the P3F risk score, which is
omitted from the specification of column (1). The es-
timated coefficients for PIPESTR and SCALE in this

Figure 4. Empirical Design

Table 1. Descriptive Statistics for Contextual Factors

Variable Construct

(1) (2) (3) (4) (5) (6)

Licensing
analysis Performance analysis

At focal
quarter

Prior to
licensing

Prior to
milestone
completion

Mean IQR Mean IQR Mean IQR

RTER OWN Recent productivity (unit) 5.52 8.81 8.26 11.18 8.05 10.43
PIPESTR Pipeline strength (unit) 1.17 0.97 1.15 1.02 1.12 0.81
RLIC OWN Recent licensing (unit) 2.56 0.00 5.96 4.74 2.70 2.01
RLIC RA Recent licensing (rest of area) 1.26 1.10 1.77 1.32 1.12 0.93
RTER RA Recent productivity (rest of area) 9.66 3.62 8.89 3.23 9.21 3.84
MKTSHARE Market share (unit) 1.94 2.01 2.04 2.18 1.96 1.72
SCALE Development experience (unit) 3.59 1.54 4.83 1.47 4.39 1.36
SCOPE Development diversification (unit) 19.13 13.59 13.14 11.87 15.33 12.51
LOGSALES Log sales (firm) 0.67 1.23 0.61 1.09 0.59 1.11
LOGRD Log R&D expenditures (firm) 0.81 1.09 0.82 0.88 0.82 0.86
Observations 6,479 1,783 1,783
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column suggest that P3Fs are more likely to arise
from units with more robust pipelines. The main
result is that the statistical significance of contextual
factors vanishes when the risk score is included in
column (2). That is, none of the contextual factors can be
taken as a systematic predictor of P3F incidence—all
regularities are captured by the risk score.26 These
results thus suggest that, after controlling for a unit’s
P3F risk, all remaining P3F incidence variation can be
viewed as random.

5. Main Results
5.1. Licensing
A positive impact of the P3F treatment on DLICENSE
would support the idea that P3Fs fuel licensing ac-
tivity. Panel A of Table 3 presents a series of esti-
mates that speak to this effect. Column (1) presents a
difference-of-means estimate computed as the aver-
age of DLICENSE for treated observations minus
that for control ones. Because the latter is 0.22, the
estimated difference of 0.1 suggests that P3Fs lift
the near-future licensing probability by about a 45%.
The estimate of column (2) is obtained from a linear
regression of DLICENSE on the treatment indicator
and contextual factors (including area and year fixed
effects). The estimated coefficient of 0.33 also sup-
ports the hypothesis. Column (3) of presents the
propensity score matching ATE. Although smaller,
the estimated impact aligns with previous estimates.
It indicates that P3Fs increase the licensing proba-
bility by 0.05 (23% lift).27

A series of checks is performed to see if we can trust
these results. First, we repeat the analysis but con-
sidering a falsified (randomly assigned) treatment.
Results are shown in panel B of Table 3. Estimates
shrink, and statistical significance goes away. Second,
we test whether our results could be influenced by
“competitive” P3Fs (i.e., P3Fs experienced by other
units in the same therapeutic area). We enrich the

linear probability specification of column (2) with an
indicator for the incidence competitive P3Fs. Whereas
the estimated coefficient for the baseline (“own”) P3F
indicator remains about constant (estimate of 0.33,
p < 0.05), that for competitive P3F incidence is small
and insignificant (estimate of −0.01, p � 0.184).26 Third,
we consider the issue of non-standard P3F shocks
outlined in Section 3.4. Recall that non-standard
P3F shocks arise due to aggregation (more than one
failed therapy) or interrelatedness (a molecule’s mul-
tiple therapies failing at different times or areas).
We reestimate the linear probability specification,
successively removing the sets of treated observa-
tions affected by each of these issues. Estimated
coefficients remain positive, and statistical signifi-
cance is preserved in the majority of cases. An
additional specification that controls for non-stan-
dard treatments through indicators produces the
same qualitative result. A characterization of each
issue and estimation results are presented in Online
Appendix D. We conclude that we can trust the es-
timates of panel A of Table 3 as the causal effect of P3Fs
on near-future licensing.
We now investigate the extent to which this P3F-

fueled licensing activity exhibits signs of rushed be-
havior. We consider two markers of rush: (i) a focus

Table 2. Logit Estimates for P3F Incidence

(1) (2)

P3F risk score 6.072***
(0.741)

PIPESTR 0.227** 0.099
(0.104) (0.107)

MKTSHARE −0.048 −0.003
(0.052) (0.051)

RLIC OWN −0.018** −0.014
(0.008) (0.008)

RLIC RA −0.019 0.017
(0.096) (0.096)

RTER OWN 0.001 0.010
(0.008) (0.008)

RTER RA 0.046 0.047
(0.036) (0.037)

SCALE 0.415*** 0.137
(0.124) (0.131)

SCOPE 0.003 0.000
(0.009) (0.008)

R&D −0.147 −0.247
(0.149) (0.150)

SALES 0.143 0.176
(0.126) (0.131)

Observations 6,479 6,479

Notes. Observations are at the unit/quarter level. The dependent
variable equals one if a P3F event is observed and zero otherwise.
Both models include year and therapeutic area fixed effects. Robust
standard errors are presented in parentheses.

**p < 0.05; ***p < 0.01.

Figure 5. Estimated P3F Risk Score Distributions
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on near-future actions and (ii) lack of premeditation.
To evaluate the first of these we define two additional
outcomes, DLICENSE2 and DLICENSE3. The first is
an indicator for any licensing activity occurring in
{q + 1, .., q + 8}; the second, one for {q + 1, .., q + 12}.
Panels C and D of Table 3 present estimates obtained
using these outcomes. Relative to the baseline (DLI-
CENSE), linear probability and propensity score es-
timates shrink and lose significance. This suggests
that the licensing impacts of P3Fs do not span beyond
the immediate near-future (i.e., one year).29

To evaluate the level of premeditation behind the
licensing surge, we first ask whether firms could be
motivated by a stock market payoff. This analysis is
prompted by previous research showing that P3Fs
adversely impact the sponsoring firm’s stock market
valuation (Sharma and Lacey 2004, Girotra et al.
2007). Following a P3F, it would thus be conceiv-
able for firms to deliberately increase the amount of li-
censing asmeans to restore their stockmarket valuation.
We investigate this idea througha standard event study

analysis (Srinivasan and Hansens, 2009). According
to this methodology, the conjectured motivation
would be supported if we found that there are positive
cumulative abnormal (stock price) returns around li-
censing events. These effects are undetectable from the
data, however, suggesting that this motivation may be
weak if present at all. The analysis and results are pre-
sented in Online Appendix E.
We next evaluate the licensing impacts of P3 suc-

cess events (P3Ss). These are positive pipeline shocks,
roughly symmetrical to P3Fs. Our rationale is that
symmetric licensing effects would be consistent
with pre-established policies linking pipeline events
to licensing, and thus illustrative of premeditation.
We identified 479 P3Ss in the sample and constructed
a “P3S risk score.”30 The analysis was then repro-
duced, maintaining all previous data assembly and
estimation protocols. Panel E of Table 3 shows the
results. Linear probability and propensity score estimates
are small and statistically insignificant. Thus, the refer-
enced policies do not seem to be in place. The asymmetry

Table 3. Main Results for the Licensing Analysis

(1) (2) (3)

Difference of means Linear probability Propensity score matching

Panel A: Outcome DLICENSE

Estimate 0.100*** 0.033*** 0.050*
Standard error (0.021) (0.014) (0.029)
Observations 6,479 6,479 5,955

Panel B: Falsified treatment

Estimate 0.003 −0.005 −0.005
Standard error (0.021) (0.018) (0.025)
Observations 6,479 6,328 6,159

Panel C: Outcome DLICENSE2

Estimate 0.105*** 0.018 0.039
Standard error (0.025) (0.016) (0.038)
Observations 6,479 6,479 5,955

Panel D: Outcome DLICENSE3

Estimate 0.094*** −0.010 0.024
Standard error (0.025) (0.014) (0.035)
Observations 6,479 6,479 5,955

Panel E: P3S treatment

Estimate 0.069*** 0.015 0.036
Standard error (0.021) (0.030) (0.036)
Observations 6,328 6,328 5,880

Notes. Column (1) shows the average outcome difference between treated and control observations.
Column (2) shows the coefficient estimated for the treatment indicator in a linear probability
specification (specification described in the text; robust standard errors reported). Column (3) shows
the ATE estimate obtained from propensity score matching (Abadie–Imbens heteroskedasticity-
consistent robust standard errors). The smaller number of observations in this column follows from
the selected sample (common propensity score support, matched observations, R ≥ 0.01).

*p < 0.1; ***p < 0.01.
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of the licensing responses to P3Fs and P3Ss is further
consistent with the contrasting nature of the problems
triggered by each type shock:whereas P3Fs create
pipeline gaps, P3Ss create pipeline surpluses. Because
the latter problem can be dealt with at full discretion
and without uncertainty, P3Ss are not expected to
introduce stakeholder pressure on management. Our
last analysis probes this rationale further by testing
whether the licensing surge is stronger in instances
where the amount of stakeholder pressure triggered
by P3Fs is presumably larger.

To implement the test, we borrow the notion of
“desperation” from Higgins and Rodriguez (2006),
which they use to describe pharmaceutical firms in
weak innovative positions (i.e., pipelines or portfolios
that are “running dry”). We identify these cases
through the indicator DESPERATE, which is acti-
vated when a unit j’s RTER OWN value belongs to
the top quartile of the variable’s distribution. Thus,
DESPERATE identifies units that have recently expe-
rienced the termination of an unusually large portion
of their pipelines. Using this measure, we estimate the
following equation:

DLICENSEjq � β0 + β1 ·Wjq · 1 −DESPERATEjq
( )

+ β2 ·Wjq ·DESPERATEjq +ΘXjq + εjq,

where W is the P3F indicator and X contains all
controls used in previous linear probability specifi-
cations (including RTER OWN and fixed effects). We
obtain β̂1 � 0.017 (p � 0.28) and β̂2 � 0.073 (p < 0.01).

These estimates indicate that the P3F-fueled licensing
surge primarily resides on “desperate” units.31

To summarize, we observe three signs that are
consistent with lack of premeditation: (i) licensing
does not have a perceptible stock market return,
(ii) the P3F-fueled licensing surge does not seem to
follow from pre-established policies linking pipeline
events to licensing, and (iii) the surge is concentrated
on instances where the amount stakeholder pressure
introduced by P3Fs would be presumably larger.

5.2. Performance
Results above suggest that P3Fs increase near-future
licensing activity in a way that is consistent with
rushed behavior. Pre-licensing P3Fs can, therefore, be
taken as a marker for a rushed licensing process. We
thus test whether pre-licensing P3Fs have a detri-
mental impact on post-licensing development per-
formance. Results are presented in panel A of Table 4.
The means of ADVANCE are 0.42 among control
therapies and 0.38 among treated ones. This associ-
ates pre-licensing P3Fs to a 0.05 higher probability of
termination (column (1)). The estimate of column (2)
corresponds to the coefficient for the treatment in-
dicator in a linear probability model. As controls, this
model includes contextual factors measured prior to
milestone completion as well as fixed effects for area,
year, anddevelopment and licensing stages. That is, this
model controls for the context at milestone completion
but not for that at licensing. The −0.036 estimate aligns

Table 4. Main Results for the Performance Analysis

(1) (2) (3)

Difference of means Linear probability Propensity score matching

Panel A: Outcome ADVANCE

Estimate −0.044 −0.036* −0.092**
Standard error (0.031) (0.020) (0.047)
Observations 1,783 1,783 1,092

Panel B: Falsified treatment

Estimate −0.039 −0.030 −0.049
Standard error (0.031) (0.028) (0.040)
Observations 1,783 1,783 1,148

Panel C: P3S treatment

Estimate −0.003 −0.001 −0.046
Standard error (0.030) (0.032) (0.067)
Observations 1,783 1,783 996

Notes. Column (1) shows the average outcome difference between treated and control observations.
Column (2) shows the coefficient estimated for the treatment indicator in a linear probability
specification (specification described in the text; robust standard errors reported). Column (3) shows
the ATE estimate obtained from propensity score matching (Abadie–Imbens heteroskedasticity-
consistent robust standard errors). The smaller number of observations in this column follows from
the selected sample (common propensity score support, matched observations, R ≥ 0.1).

*p < 0.1; **p < 0.05.
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with the difference-of-means result. Column (3)
presents the propensity score matching ATE. The es-
timated effect of almost −0.1 is considerably larger
than the two previous estimates. It implies that pre-
licensing P3Fs lower post-licensing advancement
rates by about 16%. Thus, therapies linked to a rushed
licensing process underperform in post-licensing de-
velopment relative to their counterparts licensed un-
der normal conditions.

In panel B of Table 4, we present results obtained
when the treatment is falsified through randomiza-
tion, and in panel C those obtained when the P3Fs are
replaced with P3Ss. As expected, these estimates are
small and lacking in statistical significance. Results
are also robust to the issues associated with non-
standard P3F shocks addressed before (see Online
Appendix D for the analysis and results). We now
consider whether the underperformance of therapies
licensed in a rushmay be driven by potential “capture
and kill” behavior. Under this rationale, licensing
following a P3F event would not aim at filling a
pipeline gap but instead aim at hindering future
competition—following a P3F, therapies would first
be “captured” (licensed) and then “killed” (termi-
nated). Our test relies on the idea that firms engag-
ing in this type of behavior should have no incen-
tives to continue to fund costly clinical trials for
therapies that they plan to kill. We should thus ob-
serve that therapies licensed after a P3F event en-
counter termination sooner than those licensed
under normal conditions. This difference is not
present in our data however. (Testing details and
results are presented in Online Appendix F.) We
thus conclude that “capture and kill” behavior is
unlikely to drive the underperformance of therapies
licensed in a rush.

Lastly, we note that our inference could be vul-
nerable to possible anticipatory effects. These would
occur if the teams in charge of running P3 trials re-
ceived information signaling adverse results prior
to the unfolding of P3F events.32 If licensing activ-
ity was impacted by such information, the im-
plied timelines would be relaxed. This possibility
suggests that our estimates may include an attenu-
ation bias. That is, the impacts of P3Fs that are
fully nonanticipated should be larger than those de-
scribed here.

5.3. Treatment Effect Heterogeneity
5.3.1. Licensing. Causal forest CATE estimates for the
licensing analysis (τ̂L) are presented in Figure 6(a).
These represent the estimated impact of a P3F on
DLICENSE, evaluated at each observation’s vector of
contextual factor values. Consistent with the results
of Table 3, about three-quarters of estimated values
are positive. However, a good share of estimates is

estimated imprecisely and does not meet statistical
significance standards. Nevertheless, all statistically
significant estimates lie in the positive domain. Overall,
these results indicate that units’ inclinations to license
in a rush vary significantly and are not strong enough
in every context.

5.3.2. Performance. Recall fromEquation (1) thatCATE
estimates are computed from deviations of random
forest predictions for the outcome and treatment as-
signment (m and π, respectively). Compared with our
previous performance analyses, this framework al-
lows us to simultaneously account for sources of
contextual variability at licensing (through π) and
milestone completion (through m). Figure 6(b) pres-
ents the distribution of resulting performance CATE
estimates (τ̂P). Consistent with the underperformance
result, all estimates are negative, although statistical
significance is mixed. Estimates also point to a sig-
nificant amount of treatment effect heterogeneity.
In Online Appendix G, we characterize the im-

portance of the different contextual factors as drivers
of treatment effect heterogeneity (licensing and per-
formance). Among others, wefind that themagnitude
of performance treatment effects decreases at more
advanced stages. That is, units are less inclined to
terminate therapies licensed in a rush when they are
(statistically) closer to the market. This result pro-
vides a measure of external validity, as it coincides
with the idea that the value of continued development
is larger when the market is closer.

5.3.3. Is There a Trade-off in Practice?. Motivated by
the wide heterogeneity of CATE estimates, we ask
whether the inclination to license in a rush tends to
coincide with that to terminate a therapy that was
licensed in a rush. To better grasp our question, note
that it could be possible that the contexts that make a
unit more inclined to engage in one behavior make it
less inclined to engage in the other (i.e., positively
correlated τ̂L and τ̂P values). This scenario would
undermine the relevance of the trade-off implied by
rushed behavior—units at higher risk of engaging in
rushed licensing would usually be at lower risk of
suffering its consequences. Our results support the
opposite view, namely, that the trade-off is likely
experienced in practice.
The key step to implement this analysis is in merging

τ̂L and τ̂P estimates. The problem exists because the
former is available at the unit/quarter level, whereas
the latter is available at the completedmilestone level.
Thus, the merging step requires some form of ag-
gregation. We first note that τ̂L values exhibit a high
degree of temporal persistence within units. This is
evidenced by the first-order autoregressive specifi-
cation τ̂Ljq � α + ρτ̂Ljq−1 + εjq, where j indexes units and
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q quarters, and ε is an error. The large temporal
persistence is illustrated by the high value of ρ̂, 0.84
(p < 0.01). This result suggests that it is reasonable
to aggregate τ̂L estimates at the unit level. We do
so through the unit-specific fixed effects αj ob-
tained from τ̂Ljq � αj + ρτ̂Ljq−1 + λyear(q) + εjq, where λ
corresponds to year fixed effects. Figure 7 presents
the scatterplot of (unit-normalized) α̂ and τ̂P esti-
mates. The key result is illustrated by the negative
slope (best linear fit) of the dashed line of Figure 7:
stronger inclinations to engage in rushed licensing
tend to be paired with stronger inclinations to ter-
minate therapies licensed in a rush. The overall cor-
relation between the two variables nears −0.4 (p <
0.01). Observations shown by diamonds in Figure 7
reflect τ̂L estimates with p-values below usual sig-
nificance thresholds. The correlation between these
and α̂ estimates is more pronounced than overall.

6. Why Do Therapies Licensed in a
Rush Underperform?

Our goal here is to shed some light on the possible
mechanisms behind the underperformance result of
the previous section. Based on our review in Section 2.2,
we divide the licensing process into three main sets
of activities—search, contracting, and due diligence—
and argue that post-licensing performance could be
impacted through each. We proceed by outlining
these impacts, implementing tests, and casting an
interpretation.

6.1. Potential Mechanisms
6.1.1. Search. As noted in Section 2.2, large phar-
maceutical firms deploy comprehensive search ef-
forts oriented at identifying the “right” candidates for
licensing (i.e., therapies that match the firm’s tech-
nical capabilities and strategic needs). It is easy to see
how rush could hinder these efforts: firms may not
have enough time to fully screen the landscape of
opportunities, evaluate all possible leads, etc. An
impact on post-licensing performance could then be
expected based on the insights of previous research,
indicating that the lack of proper firm/technology fit
can jeopardize the developmental success of new
technologies.33

6.1.2. Contracting. Because the full set of activities
required to support a therapy’s development are of-
ten ill-defined at the onset of collaborations, licens-
ing contracts cannot rely on specific deliverables.34

This aspect introduces significant difficulties into the
contracting process, because firms must resolve the
inherent contract incompleteness through a collection
of (monetary and nonmonetary) incentives and the
allocation of (control and residual property) rights
(Lerner and Merges 1998, Mason et al. 2008, Lerner
and Malmendier 2010). We posit that, if the con-
tracting process is carried out in a rush, the set of
terms that parties agree to may contain “loose ends”
that increase the probability of organizational fric-
tion. This friction may, in turn, increase the likelihood
of project termination. The potential relevance of this
mechanism has been insinuated, for example, by
Jones (2007), who states that “failure to arrive at a
common understanding of contractual terms from the
start of an agreement is a major source of risk that can
jeopardize outcomes (p. 716).” Rhodes et al. (2003)
further indicate that common pitfalls associated with
failed collaborations include poorly defined respon-
sibilities and inadequate structures to manage and
resolve conflicts.

6.1.3. Due Diligence. As mentioned earlier, due dili-
gence activities are primarily aimed at unearthing

Figure 6. Heterogeneous P3F Impacts: Causal Forest CATE
Estimates
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weaknesses in two key determinants of post-licensing
performance: the underlying science and intellectual
property protection of licensed therapies. Rush could
adversely impact the quality of due diligence if teams
are not given enough time to do their research. The
importance of due diligence for post-licensing success
has been widely stressed by observers (Rhodes et al.
2003, Mason et al. 2008) and academic research
(Palermo et al. 2019) and brought to the fore by the
case of Erbitux. This was a prominent experimen-
tal anticancer antibody licensed by Bristol-Meyers
Squibb (BMS) from ImClone. Following the Food
and Drug Administration’s 2001 decision to reject the
therapy for commercialization, BMS investors sued
the company on the basis that it had performed in-
adequate due diligence (Prudhome 2013). Incidentally,
BMS reportedly licensed Erbitux at a time that its
cancer pipeline was “running dry” (Prudhome 2013).

6.2. Tests
In his defense to the above-mentioned lawsuit, the
head of BMS oncology stated that his team had
reviewed “every piece of information: lab data, X-ray
scans, the toxicity-every single thing” (Prudhome
2013). This quote illustrates the difficulty of directly
testing for the due diligence channel. That is, by
definition, the quality of due diligence activities re-
flects on variables that are unobservable to the analyst
(laboratory data, x-rays, etc.). Our testing is thus
circumscribed to the search and contracting channels.

6.2.1. Search Channel. If this mechanism was at play,
therapies licensed in a rush should less often represent
the “right” candidate for the licensing firm (compared

to those licensed under normal conditions). To imple-
ment our test, we thus construct a technical matching
quality indicator (MATCH), leveraging two fine-
grained technological categorizations available from
the Cortellis data. In the first of these, categories cor-
respond to broad technologies used in the formulation
anddelivery of drugs. These include, for example, small
molecules (i.e., chemically synthesized), large mole-
cules (i.e., living organisms), topical or intravenous
delivery, etc. There is a total of almost 330 unique such
technologies in the broad sample, and therapies are
often associated with more than one. For each licensed
therapy, MATCH equals one if its entire set of asso-
ciated technologies associated had been previously
used by the licensing unit and zero otherwise. Thus,
MATCH = 1 indicates that, at the time that the deal
was struck, the licensing unit had expertise de-
veloping the specific set of technologies deployed by
the licensed therapy. A differences-of-means estimate
suggests that rushed licensing does not entail a
matching quality penalty: MATCH averages 0.61
among therapies licensed in a rush and 0.60 among
the rest (p � 0.96). We obtained the same qualitative
result when considering the second and even finer
technological categorization, which is based on “target-
based actions” (i.e., precise descriptions of the way
that therapies produce a pharmacological effect in
the human body).35

6.2.2. Contracting Channel. We analyze the incidence
of a specific type of development termination that
arguably represents a signal of organizational friction
and can, therefore, be taken as a proxy for the rele-
vance of this channel. Recall from Section 3.3 that
most terminations in our data (86%) correspond to
cases in which a therapy’s development is declared
terminated before the associated licensing agreement
is. This scenario aligns with standard industry views
for what causes of attrition—terminations primarily
stem from the nature of testing results, which span
beyond organizational remits. We therefore refer to
these as “standard” terminations. For a small fraction
of terminations (9%), we instead observe that the li-
censing agreement is dissolved prior to the termi-
nation of development.36 Because the organizational
element takes precedence in this case, we assert that
these “agreement” terminations can indicate orga-
nizational friction and as such, signal rushed con-
tracting. A comparison of the frequencies of agreement
terminations supports this view: they correspond to
12% of terminations of therapies licensed in a rush but
only 6% of terminations of therapies licensed under
normal conditions (p < 0.05).
The low overall frequency of agreement termina-

tions challenges the generalizability of this result. To
address this weakness, we perform an additional

Figure 7. Correlating CATE Estimates obtained from
Licensing and Performance Analyses

Notes. Horizontal values represent each decision-making unit’s
overall inclination to engage in rushed licensing. They are computed
as unit-level fixed effects in a first-order autoregressive model for
licensing CATE estimates.
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analysis utilizing performance CATE estimates (τ̂P).
Recall that these estimates reflect units’ inclinations to
forsake the development of therapies licensed in a
rush. Also recall that they are obtained without uti-
lizing termination-type information and that their
heterogeneity is pegged to contextual factors mea-
sured at milestone completion. We evaluate whether
τ̂P estimates predict termination type. Finding that
smaller (i.e., more negative) τ̂P values are associated
with higher probabilities of agreement termination
(relative to standard termination) would support
the generalizability of the above result. In particular,
this would suggest that the contexts that give rise to
stronger inclinations to terminate therapies licensed
in a rush alsowarrant higher likelihoods of agreement
termination. Considering termination outcomes only,
we regress an agreement termination indicator on τ̂P

values. Contextual factors are added as controls along
with year, area, development, and licensing stage
fixed effects. Results support generalizability: a one-
standard deviation smaller (i.e., more negative) τ̂P

value is associated with a 0.17 larger probability of
agreement termination (p < 0.05).

6.3. Interpretation and Caveats
Testing results for the search channel suggest that,
based on observable characteristics, rush does not
hinderfirms’ ability to license a technologically fitting
therapy. An additional analysis reinforces this con-
clusion: there is no evidence of a rush-fueled differ-
ence in terms of maturities (stages at licensing).37

These results would be difficult to rationalize if
therapies licensed in a rush were identified through
“fresh” search (i.e., search initiated following the
triggering P3F). Instead, these findings may reflect
that therapies licensed in a rush are generally drawn
from a pool of candidates identified prior to the
triggering P3F event. That is, therapies licensed in a
rush may correspond to old leads that are “recycled,”
or to ongoing licensing processes that are accelerated.
We favor this interpretation on different grounds.
Foremost, the timing of the licensing surge makes
it implausible for a fresh search process to take place—
search would have to be completed within months.
This seems unlikely given characteristics of the
process (see Section 2.2) and the notorious lack of
thickness of technology licensing markets (Gans and
Stern 2010). In addition, as noted previously, large
pharmaceutical firms engage in continuous scouting.
This suggests that, at the time that a P3F shock hits,
firms likely possess a number of advanced leads to
pursue further. As such, our suspicions are turned
away from the search mechanism and to the possible
acceleration of the remaining set of activities, due
diligence, and contracting.

Given the importance of contracting aspects for
development performance, our results in this regard
are conspicuous. We interpret them as a strong signal
that the underperformance result could hinge on the
quality of the agreements that firms converge to
during negotiation. However, being unable to di-
rectly test for the due diligencemechanism,we cannot
rule out that part of the underperformance effect may
stem from a heightened vulnerability to “unobservable”
(scientific/intellectual property)weaknesses. Despite
this limitation, our results seem to converge on the
idea that the underperformance result is rooted on
activities taking place in the “last mile” of the li-
censing process. As such, firms may have it in their
control to alleviate the potential consequences of li-
censing under pressure, for example, through the
strengthening of protocols aimed at minimizing con-
tracting “lose ends” or by revamping the amount
personnel and resources devoted to due diligence.
We conclude with a couple of caveats. First, if bio-

technologyfirms on the supplywere aware of the post-
licensing underperformance of therapies licensed in
a rush, they may be reluctant to transact under these
conditions. This could imply a form of selection on
unobservables that would further obfuscate our in-
terpretation. In this case, the scope of actions aimed at
limiting the detrimental consequences of rushed li-
censing would be reduced. Second, if research teams
are able to anticipate P3Fs (as noted in Section 5.2), the
implied timeframes would be relaxed, and fresh search
could play a role. Based on these caveats and the high-
level formulation of our tests, we treat this evidence as
primarily suggestive. A more powerful analysis would
rely on records tracking the kinds and amount of ac-
tivities performed in preparation for a licensing deal.

7. Conclusions and Limitations
Our findings suggest that large pharmaceutical firms
impacted by large negative shocks to their pipelines
(P3Fs) may use drug licensing to “fill” the resulting
“pipeline gaps.” The effect’s timing is what makes it
significant: it unfolds over a window that is quite
short given the usual licensing timelines. We thus
interpret this finding as a reflection of rushed in-
novation behavior. Consistently, we find that drugs
licensed shortly after a P3F event underperform in
subsequent development: they are significantly less
likely to reach the market compared with others li-
censed under normal conditions. The significance of
this result, in turn, stems from the importance of
development attrition: the bulk of pharmaceutical
R&D budgets is spent on experimental therapies that
never reach the market. For this reason, the devel-
opment underperformance of therapies licensed in a
rush stands out as a heavy penalty for any benefits
that could be derived from agile decision-making.
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Because P3 failures are not rare events in the industry,
rushed decisions may be more than anecdotal. Other
negative shocks such as Food andDrugAdministration
Public Health Advisories (Krieger et al. 2018) and
product recalls (Ball et al. 2018) could induce the same
type of behavior and consequences.

There is, however, no simple way to conclusively
determine whether rushed licensing is suboptimal
from the point of view of shareholders. The primary
difficulty comes from the complexity of the typical
financial compensation structure. Licensing contracts
rely heavily on contingent payments, which means
that development terminations also imply a reduction
in the stream of payments made by the in-licensing firm.
Moreover, counterfactual cost calculations would re-
quire the researcher to a take stand on the specific me-
chanics of contract negotiations (and whether rush af-
fects them). This exercisewould be further challenged by
the fact that it is difficult to compile systematic contract
design and clinical trial cost data.

The primary limitations of this study stem directly
from data availability. As we noted earlier, data
tracking the set of preparatory and execution activ-
ities for the licensing processwould be of great help to
better ascertain the mechanisms underlying the
underperformance result. Because we lack this type
of data, we have only been able to provide suggestive
mechanistic evidence. A second set of limitations stems
from structural complexity. For example, licensing deals
vary in terms of exclusivity and geographical scope.
Here, we have opted for a clean, although inefficient,
solution, which is to circumscribe the analysis to a par-
ticular type of deals (i.e., exclusive worldwide rights).
Another challenging feature of drug licensing corre-
sponds to the bundling of multiple therapies within a
single licensing deal. Again in this case, we have opted
for tractability, treating each licensed therapy as a sep-
arate licensing event.Wehope that future research is able
to overcome these limitations.
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Endnotes
1Chandy et al. (2006) illustrate this tradeoff by examining firm-level
pharmaceutical conversion rates (patenting to launch). Like these

authors, we are unable to investigate impacts on revenues owing to
the small number of products that reach the market.
2Based on the comprehensive estimates of Wong et al. (2019) (who
use a large sample that covers the same period as ours), the probability
of reaching P3 conditional on entering P1 is about 0.3.
3The problem’s magnitude is reflected by the statistic that about
80% of U.S. trials fail to meet enrollment timelines (see https://
www.drugdevelopment-technology.com/features/featureclinical
-trial-patient-recruitment/).
4These figures are expressed in the industry’s “biobucks” yardstick
(i.e., contingent payments are accounted for in nominal value).
5The evidence of Danzon et al. (2007) suggests that trade sales are
used as an exit strategy after encountering financing problems.
6 Information is obtained from company records, conferences, and
other public sources; curated and updated daily by over 500 expert
analysts. As of 2016 Q3, Cortellis included over 65,000 drug devel-
opment histories and 48,000 deal reports, both of which date back
several decades. Data were last accessed in mid-2018.
7The list of firms is Abbvie, Amgen, Astellas, Astra Zeneca, Bayer,
Biogen, Bristol-Myers Squibb, Celgene, Daiichi Sankyo, Eli Lilly,
Gilead, GlaxoSmithKline, Johnson & Johnson,Merck & Co., Novartis,
Pfizer, Roche, Sanofi, Shire, and Takeda. As of October 2018, all but
two of these firms (Gilead and Roche) were members of the Asso-
ciation of Pharmaceutical Research and Manufacturers of America,
which is known as the trade association for big pharma.
8We focus on Cortellis’ “Drug-Development/Commercialization”
licensing deals, described as “Partner [in-licensing] firm acquires a
license from Principal [out-licensing] firm to develop and commer-
cialize (sell) drug(s)” (from Cortellis documentation). Other types
of licensing deals in the broad sample reflect alternative business
models.
9This approach is adopted for tractability. Some support is offered by
the finding that bundles of licensed therapies are elastic to the in-
licensing firm’s goals (Hermosilla and Wu 2018).
10By this metric, the analysis sample represents significant and stable
percentage (about 15%) of the broad Cortellis sample.
11Cortellis licensing and development data are kept in separate data
repositories, and the website does not (as of mid-2018) allow the user
to systematically bridge between the two. We performed the
matching procedure manually.
12The complementary 5% corresponds to a third category that we call
“idle state” termination. This arises when abnormally long stage
development times coincide with unreported outcomes.
13We attribute this to the large participation of cancer therapies in our
sample, which are typically associated with the lowest success rates
(Wong et al. 2019). Success rates in our sample were compared with
those of DiMasi et al. (2003, 2010, 2016), Abrantes-Metz et al. (2004),
Kola and Landis (2004), Arrowsmith (2011), Pammolli et al. (2011),
Hay et al. (2014), Waring et al. (2015), Smietana et al. (2016), and
Wong et al. (2019).
14The larger number of observations for phase 2 than phase 1 is
largely explained by a nuance of the drug development process. This
is that many therapies “skip” phase 1 if safety has been already
demonstrated for other therapies of the same compound.
15The Herfindahl-Hirschman Index of concentration is about 15/100.
16Amolecule’s therapies may fail at different times if therapies are
tested through independent P3 trials. This often occurs if there are
large-enough differences among targeted conditions, populations,
or dosages required to test each therapy. If the molecule’s ther-
apies have similar-enough properties, they may be tested through
a unique trial (as for Pfizer’s Torcetrapib).
17Causal forests were first proposed byWager and Athey (2018). The
generalized random forest implementation that we usewas proposed
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by the same authors in a later paper (Athey et al. 2019). We prefer this
approach given its demonstrated superior performance recovering
“true” CATEs (see Athey et al. 2019).
18These probability weights also vary across time. They are estimated
using tens of thousands of development histories available from the
broad Cortellis sample without including those in the analysis sample.
Online Appendix B outlines the procedure and provides descriptives.
19 Â−j is computed from industry-wide data (all units in the broad
Cortellis sample).
20Licensing waves could arise when basic science breakthroughs
infuse the supply of licensable candidates with new types of can-
didates. Hermosilla and Lemus (2019) illustrate such a case following
the 2003 unveiling of the Human Genome.
21The empirical relevance of this effect is nevertheless down-
played by the findings of Higgins and Rodriguez (2006). They
find that, whereas pipeline strength systematically predicts a
pharmaceutical firm acquiring other to revitalize its position,
portfolio strength is “consistently not significant” (Higgins and
Rodriguez 2006, p. 370).
22To construct this variable, one would ideally leverage time series
sales and market exclusivity data for each marketed therapy. This
approach is unfeasible in our case: the portfolio of marketed therapies
is empty for many units in our sample (between 40% and 50% of
observations depending on the analysis—for these, there is no
product lifecycle information). For units with nonempty portfolios,
the omission of this information will only be problematic if there are
systematic treated/control differences in the strength and “youth” of
portfolios. We are unable to directly test this. Because we are
including a host of related factors (including MKTSHARE and
firm-level sales), we nevertheless presume that, if present, these
imbalances will be small. Moreover, the results of Higgins and
Rodriguez (2006) (see footnote 21) suggest that, even if present,
these imbalances are unlikely to introduce bias.
23This number results after dropping about 286 “contaminated”
control observations. Contamination occurs when a P3F shock is
observed within {q − 3, .., q} or {q + 1, .., q + 4}.
24Note that propensity scores here reflect the probability that a li-
censing event has been preceded by a P3F.
25Recall that in this dataset there are 418 P3Fs and almost 6,500
observations. “Contaminated” observations (see footnote 22) are not
problematic in this case so they are kept.
26According to the estimate, a 0.1 larger risk score yields a 0.044
higher P3F probability.
27Balancing statistics suggest that the matching procedure does a
good job reducing treated/control covariate imbalances in the raw
sample, and that resulting differences are acceptable. These statistics
are presented in Online Appendix C.
28This result do not qualitatively change when we replace the in-
dicator for a count of competitive P3Fs.
29The differences-of-means estimate of column (1) of Table 3 remains
about constant. This result could follow from the confounding effects
of contextual differences (in particular, by the fact that units with
stronger pipelines license more often).
30P3Ss are identified through the definitive marker of successful P3
completion—the submission of the new drug application package
(i.e., initiation of review stage). P3S risk scoreswere constructed using
analogous procedures to those used for the P3F score. We note that,
because a therapy’s P3S requires the completion of scheduled trials
(without having experienced a P3F), P3Ss should be less surprising
that P3Fs and therefore entail shocks of smaller magnitude. How-
ever, the rate of P3 success for cancer therapies is well below 0.5
(0.36 according to the best available estimate of Wong et al. 2019).
This means that, for cancer therapies, successful events should be

intrinsically more surprising than negative ones. Because cancer
therapies dominate our sample, P3Ss may carry relatively more im-
portance in our data set than in the population. These caveats suggest
that P3Fs and P3Ss should not be viewed as strictly symmetric shocks.
We move forward assuming rough symmetry.
31For robustness, we also estimate a specification in which the
terms β1 ·Wjq · (1 −DESPERATEjq) + β2 ·Wjq ·DESPERATEjq are
replaced for β1 ·Wjq + β2 ·Wjq ·NORM RTER OWNjq, where NORM
RTER OWN is a standard normalization of RTER OWN. We obtain
β̂1 � 0.028 (p � 0.048) and β̂2 � 0.040 (p < 0.003). These estimates
suggest that one standard deviation of RTER OWN increases the
impact of P3F on the near-future licensing probability by 0.04.
32These signals could, for example, be based on the dropout rates
of patients enrolled in the trial (Chan and Hamilton 2006).
33For example, in a seminal article, Teece (1986) argues that tech-
nological innovators may fail to profit from their innovations if these
are not paired with the “right” (broadly defined) complementary
assets. Gans and Stern (2010) find consistent evidence in the context of
commercialization strategies for startup innovation. Mowery et al.
(1998) andDiestre andRajagopalan (2012) illustrate the importance of
matching on a narrower set of capabilities (technical expertise) by
documenting equilibrium assortative matching between (buying)
firms’ technical capabilities and the type of technologies that they license.
34Aghion and Tirole (1994) highlight this as a general observation
for R&D collaborations.
35Formally, target-based actions (TBAs) correspond to mechanism of
action/targeted cell pairs. A compound’s mechanism of action refers
to the way that the compound produces a pharmacological effect on
the body. Some molecules may, for example, act by stimulating
specialized cells (like adrenaline); others may act by replacing them
(like insulin). Because TBA pairs also specify the targeted cell, they
provide an even more specific categorization for the technicalities
involved in each compound’s development. There are about 7,500
TBA levels in the overall data. Therapies are associated with more
than one only occasionally. DefiningMATCH based on these data, we
find that it averages 0.26 among therapies licensed in a rush and 0.22
among the rest. The difference is not statistically significant (p � 0.24).
36Depending on the nature of the original agreement, this scenario
can be followed by either or both firms developing the therapy in-
dividually or with other partners, or by the therapy’s definitive
scrapping.
37We tested for a difference in the distribution of stages at licensing
using a chi-squared test. The p-value for the null hypothesis of no
difference is 0.242.
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